ABSTRACT
Efficient construction of multi-scale image pyramids for real-time embedded robot vision. 61 p.
Interest point detectors, or keypoint detectors, have been of great interest for embedded robot vision for a long time, especially those which provide robustness against multiple geometrical variations and changes in scale. The detection of scale invariant features is normally done by constructing multi-scale image pyramids and performing an exhaustive search for extrema in the scale space, an approach that is present in object recognition methods such as SIFT and SURF. These methods are able to find very robust interest points with suitable properties for object recognition, but at the same time are computationally expensive. In this work we present an efficient method for the construction of SIFT-like image pyramids in embedded systems such as the BeagleBoard-xM. The method we present here aims at using computationally less expensive techniques and reusing already processed information in an efficient manner in order to reduce the overall computation time. To simplify the pyramid building process we use binomial filters instead of conventional Gaussian filters used in the original SIFT method to calculate multiple scales of an image. Binomial filters are implementable using fixed-point notation, being a big advantage for many embedded systems that do not provide native floating-point support. We also reduce the amount of convolution operations needed by resampling already processed scales of the pyramid. After presenting our efficient pyramid construction method, we show how to implement it in an efficient manner in a SIMD (Single Instruction, Multiple Data) platform -- the SIMD platform we use is the ARM Neon extension available in the BeagleBoard-xM ARM Cortex-A8 processor. SIMD platforms in general are very useful for multimedia applications, where normally it is necessary to perform the same operation over several elements, such as pixels in images, enabling multiple data to be processed with a single instruction of the processor. However, the Neon extension in the Cortex-A8 processor does not support floating-point operations, so the whole method was carefully implemented to overcome this limitation. Finally, we provide some comparison results regarding the method we propose here and the original SIFT approach, including performance regarding execution time and repeatability of detected keypoints. With a straightforward implementation (without the use of the SIMD platform), we show that our method takes approximately 1⁄4 of the time taken to build the entire original SIFT pyramid, while repeating up to 86% of the interest points found with the original method. With a complete fixed-point approach (including vectorization within the SIMD platform) we show that repeatability reaches up to 92% of the original SIFT keypoints while reducing the processing time to less than 3%.
Keywords:Multi-scale image pyramids, Interest point detection, Embedded robot vision.